Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C
نویسندگان
چکیده
Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å pre-powerstroke state (ADP⋅VO4) crystal structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures.
منابع مشابه
Comparative Kinetic and Functional Characterization of the Motor Domains of Human Nonmuscle Myosin-2C Isoforms*
Nonmuscle myosins are widely distributed and play important roles in the maintenance of cell morphology and cytokinesis. In this study, we compare the detailed kinetic and functional characterization of naturally occurring transcript variants of the motor domain of human nonmuscle myosin heavy chain (NMHC)-2C. NMHC-2C is alternatively spliced both in loop-1 and loop-2. Isoform 2C0 contains no i...
متن کاملEmerging insights into the biology of metastasis: A review article
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, ...
متن کاملKinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster.
Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin's essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor doma...
متن کاملMultiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex.
To decrypt the mechanistic basis of myosin motor function, it is essential to probe the conformational changes in actomyosin with high spatial and temporal resolutions. In a computational effort to meet this challenge, we have performed a multiscale modeling of the allosteric couplings and transition pathway of actomyosin complex by combining coarse-grained modeling of the entire complex with a...
متن کاملSecond-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis.
Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramo...
متن کامل